\qquad ID: \qquad

Sirindhorn International Institute of Technology Thammasat University at Rangsit

School of Information, Computer and Communication Technology

ECS 203: Problem Set and Tutorial 11

Semester/Year: 2/2015
Course Title: Basic Electrical Engineering
Instructor: Asst. Prof. Dr. Prapun Suksompong (prapun@siit.tu.ac.th)
Course Web Site: http://www2.siit.tu.ac.th/prapun/ecs203/

Due date: Not Due

Instructions

1. All phasor should be answered in polar form where the magnitude is positive and the phase is between -180° and 180°.
2. All sinusoid should be answered in the cosine form where the amplitude is positive and the phase is between -180° and 180°.

Questions

The first three questions are here to give you a warm-up exercise for the computation that you will encounter throughout chapters 7,8 and 9 . You will need to be able to work with complex numbers and many of the calculations will require the use of a calculator.

1) Simplify and then express the following complex numbers in polar form. Make sure that the magnitude values are positive and the phase values are between -180° and 180°.
a) $-6+8 j$
b) $\frac{50 \angle-30^{\circ}}{10 j+5-2 j}$
\qquad ID: \qquad
2) Simplify and then express the following complex numbers in rectangular form.
a) $-10 j+\frac{(3-2 j) \times(8+10 j)}{(3-2 j)+(8+10 j)}$
b) $\left(20 \angle-15^{\circ}\right) \times \frac{100 j}{60+100 j}$
3) Suppose $\mathbf{V}_{S}=20 \angle 90^{\circ}, \mathbf{I}_{S}=5, \mathbf{Z}_{1}=-2 j, \mathbf{Z}_{2}=10 j, \mathbf{Z}_{3}=8, \mathbf{Z}_{4}=-2 j$, and $\mathbf{Z}_{5}=4$. Furthermore, suppose

$$
\begin{aligned}
\mathbf{I}_{3} & =\mathbf{I}_{S}, \\
-\mathbf{I}_{1} \mathbf{Z}_{3}-\left(\mathbf{I}_{1}-\mathbf{I}_{3}\right) \mathbf{Z}_{2}-\left(\mathbf{I}_{1}-\mathbf{I}_{2}\right) \mathbf{Z}_{4} & =0, \text { and } \\
-\left(\mathbf{I}_{2}-\mathbf{I}_{1}\right) \mathbf{Z}_{4}-\left(\mathbf{I}_{2}-\mathbf{I}_{3}\right) \mathbf{Z}_{1}-\mathbf{I}_{2} \mathbf{Z}_{5}-\mathbf{V}_{S} & =0,
\end{aligned}
$$

Find \mathbf{I}_{2} (in polar form).
\qquad ID: \qquad
4) [Alexander and Sadiku, 2009, Ex 9.1] Find the amplitude, phase, period, and frequency of the sinusoid

$$
v(t)=12 \cos \left(50 t+10^{\circ}\right) .
$$

5) Find the phasors (in standard form) corresponding to the following signals.
a) $v(t)=120 \sin \left(10 t-50^{\circ}\right) V$
b) $i(t)=-60 \cos \left(30 \mathrm{t}+10^{\circ}\right) \mathrm{mA}$
c) $\mathrm{i}(\mathrm{t})=-8 \sin \left(10 \mathrm{t}+70^{\circ}\right) \mathrm{mA}$
6) [F2010]
a) Find the sinusoid $x(t)$ which is represented by a phasor $\mathbf{X}=-7+7 j$. Assume $\omega=100$ $\mathrm{rad} / \mathrm{s}$. (Your answer should be a time-dependent sinusoid in standard form.)
b) Simplify $x(t)=7 \cos \left(t-777^{\circ}\right)-7 \sin \left(t-77^{\circ}\right)$. (Your answer should be a time-dependent sinusoid in standard form.)
\qquad ID: \qquad
7) [Alexander and Sadiku, 2009, Q9.24a] Find $v(t)$ in the following integrodifferential equation using the phasor approach:

$$
v(t)+\int v d t=5 \cos \left(t+45^{\circ}\right) .
$$

8) $\left(^{*}\right)$ Consider the signal $\mathrm{x}(\mathrm{t})$ in Figure 1 below. Suppose $x(0)=-3.356$. Find its phasor.

Figure 1
Hint: 1) The amplitude is an integer. Find it first. 2) When $t=0$, we also have $\omega t=0$.

